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A simplified model of Darwinian evolution at the molecular level is studied by applying the
methods of artificial chemistry. A chemical reactor (chemostat) contains molecules that are
represented by binary strings, the strings being capable of replication with a probability pro-
portional to their fitness. Moreover, the process of replication is not fully precise, sporadic
mutations may produce new offspring strings, which are slightly different from their parent
templates. The dynamics of such an autoreplicating system is described by Eigen’s differen-
tial equations. These equations have a unique asymptotically stable state, which corresponds
to those strings that have the highest rate constants (fitness). Fitness of binary string is cal-
culated as a graph-theory similarity between a folding (phenotype) of respective string and
the so-called required folding. The presented method offers a detailed view of mechanisms
of the molecular Darwinian evolution, in particular of the meaning and importance of neu-
tral mutations.
Keywords: Artificial life; Artificial chemistry; Fitness landscape; Eigen theory of replicators;
Molecular Darwinian evolution; Neutral mutations; Neutral evolution.

...the central problem of evolution... is that of a mechanism by which the
species may continually find its way from lower to higher peaks.

(Sewall Wright1)

Darwinian evolution belongs to standard subjects of interest of Artificial
Life2. In particular, the main stimulus was observed at the end of the eight-
ies, when evolutionary algorithms suddenly emerged as a new paradigm of
computer science based on the metaphor of Darwinian evolution. This par-
adigm may be traced back to 1931 when Wright1 has postulated an adaptive
landscape (nowadays called the fitness landscape or fitness surface) and char-
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acterized Darwinian evolution as an adaptive process (nowadays we say an
optimization process), where the genotype of population is adapted in such
a way that it reaches a local (even global) maximum on the fitness surface.
Forty years later, this ingenious idea was used by Holland3 as a metaphor
for creation of genetic algorithms, which may be now interpreted as an ab-
straction of Darwinian evolution in the form of universal optimization al-
gorithm4 (see Dennett’s seminal book5).

In this paper we present a very simple computational model of Darwin-
ian evolution, which may reflect some of its most elementary aspects ap-
pearing on biomacromolecular level (e.g. see experiments of Spiegelman6

from the end of the sixties). This “molecular” model of Darwinian evolu-
tion is capable of offering a detailed quantitative view of many of its basic
concepts and notions, e.g. the role of neutral mutations may be studied as
an auxiliary device to overcome local valleys of fitness surface in the course
of the adaptation process. Artificial chemistry plays a very important role in
the present study7–14, which may be considered as a subfield of artificial life
based on the metaphor of chemical reactor (in our forthcoming discussions
called the chemostat). The chemostat is composed of “molecules” that are
represented by abstract objects (e.g. by strings composed of symbols, trees,
formulae constructed within algebra, etc.), which are transformed
stochastically into other feasible objects by “chemical reactions”. The prob-
ability of these transformations is strictly determined by the structure of in-
coming objects, resulting – outgoing objects are returned to the chemostat.
Kinetics of the processes running in the chemostat is well described by
Eigen’s replicator differential equations15,16, which were constructed on the
basis of the well-known physico-chemical law of mass action. The main ob-
jects of artificial chemistry are (i) to study formal systems that are based on
the chemical metaphor and that are potentially able to perform parallel
computation, and (ii) to generate formal autocatalytic chemical systems
(molecules are represented by structured objects) for purposes of “in silico”
simulations of an emergence of living systems.

Recently, Newman and Engelhardt17 have shown that many aspects of
the molecular Darwinian evolution in silico may be studied by making use
of a fitness surface based on a generalization of Kauffman KN 18,19 rugged
function with tunable degree of neutrality. They demonstrated that almost
all basic results obtained by Schuster’s Vienna group20–24, based on a realis-
tic physico-chemical model of RNA molecules and their folding, may be
simply and immediately obtained by this simple model of fitness surface
(we have to note that the first two above mentioned papers20,21 also used a
binary string representation of replicators). Recently, we have used14 this
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simple model of fitness surface for a simulation of the molecular Darwinian
evolution and the obtained results were formally closely related to or even
almost identical with the theoretical results predicted by Eigen’s replicator
differential equations. We repeat our previous results with binary strings in
place of “molecules” that fill an artificial-chemistry chemostat. Each binary
string is evaluated by a planar secondary structure called folding. The sec-
ondary structure of binary strings specifies their fitness function, which is
directly related to the probability of a replication process of strings. The
folding of binary strings – genotypes – is considered as a phenotype that
specifies the fitness of the genotype. This simple triad genotype – pheno-
type – fitness is fundamental for our computer simulation of the molecular
Darwinian evolution, such that the evolution is interpreted through
changes of string phenotypes.

THEORY

Eigen’s Replicators

Manfred Eigen published in the early seventies a seminal paper entitled
“Self organization of matter and the evolution of biological macromolecules”15,
where he postulated a hypothetical chemical system composed of the
so-called replicators. This system mimics Darwinian evolution even on an
abiotic level. Later, Eigen and Schuster16 discussed the proposed model as a
possible abiotic mechanism for increasing complexity on a border of abiotic
and biotic systems.

Let us consider biomacromolecules (called the replicators) X1, X2, ..., Xn,
which are capable of the following chemical reactions:

Xi
ki → Xi + Xi (i = 1, 2, ..., n) (1a)

Xi
φ → ∅ (i = 1, 2, ..., n) (1b)

The reaction (1a) means that a molecule Xi is replicated onto itself with a
rate constant ki, whereas the reaction (1b) means that Xi becomes extinct
with a rate parameter φ (this parameter is called the “dilution flux” and will
be specified further). Applying the mass-action law of chemical kinetics, we
get the following system of differential equations
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& ( ) ( , , ... , )x x k i ni i i= − =φ 1 2 (2a)

The dilution flux φ is a free parameter and it will be determined in such a
way, that the following condition is satisfied: a sum of time derivatives of
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where the condition ∑xi = 1 is used without a loss of generality of our con-
siderations. Its analytical solution is as follows
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This solution has an asymptotic property, where only one type of molecules
(with the maximal rate constant kmax) is surviving while other ones become
extinct
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Loosely speaking, each type of molecules may be considered as a type of
species with a fitness specified by the rate constant k. In a chemostat “sur-
vive” only those molecules – species that are best fitted, i.e. that have the
highest rate constant kmax, and all other molecules with smaller rate con-
stants become extinct (Fig. 1). The condition of invariability of the sum of
concentrations (i.e. ∑xi = 1) introduces a “selection pressure” to replicated
molecules, only those molecules will survive that are best fitted with the
maximal rate constant.

The proposed model may be simply generalized15 in such a way that mu-
tations are introduced into process of replications. The system (2) is modi-
fied as follows
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where kij is a rate constant assigned to a modified reaction (1a)

Xi
kij → Xi + Xj (i, j = 1, 2, ..., n) (6)

There is postulated that a rate constant matrix K = (kij) has dominant diago-
nal elements, i.e. nondiagonal elements are much smaller than diagonal
ones. This requirement directly follows from an assumption that imperfect
replications (6) are very rare, the product Xj is considered as a weak muta-
tion of autoreplicated Xi, Xj = Omut(Xi). The dilution flux φ from (5) is deter-
mined by the condition that the sum of time derivatives of concentrations
is vanishing, ∑ =&xi 0 . We get

φ =
=

∑ k xij j
i j

n

, 1

(7)

Analytical solution of (5) with dilution flux specified by (7) is25
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FIG. 1
A plot of relative concentrations of four component system with rate constants k1 = 1, k2 = 2,
k3 = 3, and k4 = 4. We can see that only molecules X4 survive in the end
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where Q = (qij) is a nonsingular matrix that diagonalizes the rate matrix K,
Q–1KQ = � = diag(λ1, λ2, ..., λn).

Since we have postulated that nondiagonal elements of K are much
smaller than its diagonal elements, its eigenvalues λ’s are very close to diag-
onal elements, λi &= kii, and the transformation matrix Q is closely related to
a unit matrix, qij &= δij (a Kronecker’s delta symbol). This means that intro-
duction of weak mutations does not change dramatically general properties
of the above simple replicator system without mutations. In particular, the
final state of chemostat (for t→∞) will be composed almost entirely of mole-
cules with the highest rate constant kmax. These molecules are weakly ac-
companied by other replicators with rate constants k’s slightly smaller than
kmax.

Replicators and Molecular Darwinian Evolution

Eigen’s system of replicators with mutations (i.e. with imperfect replica-
tions) presented in the previous section can be simply used for description
of the molecular Darwinian evolution. Let us consider a hypothetical reaction
system composed of a sequence of n replicators X1, X2, X3, ..., Xn. They are
endowed with a property that Xi may produce by imperfect replication the
juxtaposed replicators Xi±1 (Fig. 2, diagram A). If an initial concentration of
X1 is x1(0) = 1, then in the course of evolution there exist concentration
waves that are consecutively assigned X2, X3, ..., Xn (see Fig. 2, diagram B).
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FIG. 2
Diagram A represents a four-replicator system, where a replicator Xi produces by imperfect rep-
lications juxtaposed replicators Xi–1 and Xi+1. Edges of the diagram are evaluated by rate con-
stants, their numerical values are specified by matrix K (see Eq. (12)), where diagonal elements
are well separated and much greater than nondiagonal ones. Diagram B displays plots of
replicator concentration profiles that form a sequence of concentration waves. This diagram
also contains a plot of mean fitness specified by k k x k x= + +11 1 44 4... , which forms a typical
nondecreasing “stair” function
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This fact may be simply interpreted as a manifestation of the molecular
Darwinian evolution, where fitness of single “species” are specified by diag-
onal rate constants kii. The evolution process was started by a population
composed entirely of X1. Since its replication is imperfect, it may occasion-
ally produce (specified by the rate constant k12) the next replicator X2 with
a greater fitness (rate constant k22) than its predecessor X1 (k11 < k22). This
means that in the course of the forthcoming evolution, “species” X2 will
survive (i.e. its concentration will climb almost to unity while the concen-
tration of X1 will be falling to a very small value). This process is repeated
for the replicator X2 considered now as an initial replicator (it plays the
same role as the replicator X1 in the previous stage). Since the replication of
X2 is imperfect, “species” X3 is produced with a low probability. However,
since X3 has a greater fitness than its predecessor X2 (k33 > k22), this new
“species” X3 will survive. This process is finished when the last replicator Xn
has appeared initially as a consequence of imperfect replication of Xn–1 and
then its concentration increases to unity by its autoreplication.

In order to formalize on a semiquantitative level the above consider-
ations, let us assume that the replicator system in time t0 is situated in such
a transient state, where the concentration of Xi is almost unity, whereas
concentrations of juxtaposed two replicators Xi–1 and Xi+1 are very small,
i.e. xi(t0) = 1 – 2δ, xi–1(t0) = xi+1(t0) = δ, and xj(t0) = 0 for other remaining con-
centrations, where δ is a small positive number. This means that dilution
flux φ(t) (7) is specified by

φ δ δ( ) ( ) ( )(, , , ,t k k k k ki i i i i i ii i i0 1 2 1 1 1 1 2= + + + − +− − − − − −1 1

1 1 1 1 2

+ +

+ + +
+

+ + + + +

k

(k k k
i i

i i i i i i

,

, , ,

)

)δ
(9)

Then differential equation (5) is as follows:
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If we introduce here the above specifications of concentrations for the time t0
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This means that the assumption of good separability of concentration
waves gives a strong condition for rate constants touching the replicator Xi
in particular: we may say that for a particular replicator the sum of “out-
going” rate constants must be much smaller than the sum of “incoming”
rate constants. In other words, loosely speaking, the “probability” of cre-
ation of a particular replicator from its juxtaposed replicators by their
imprecise replications must be much greater than the “probability” of
destroying the respective replicator by its imprecise replication.

The above simple considerations are numerically verified for a simple
four-replicator system with rate constants specified by the following matrix
of rate coefficients

K =






−

− −

− −

−

01 10 0 0

10 0 55 10 0

0 10 08 10

0 0 10 10

3

7 7

11 11

7

.

.

.
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(12)

This matrix satisfies both the above postulated conditions: (i) Its diagonal
matrix elements are much greater than its nondiagonal ones, and (ii) the
nondiagonal rate constants satisfy inequalities of the type (11). This means
that we may expect a Darwinian behavior of the replicator system. This ex-
pectation nicely coincides with our numerical results displayed in Fig. 2, di-
agram B, where concentration profiles of single replicators are shown,
which form a sequence of concentration waves typical of Darwinian evolu-
tion. Summarizing the present section, we may say that Eigen’s pheno-
menological theory of replicators forms a proper theoretical framework
for numerical studies of the molecular Darwinian evolutionary theory
(i.e. applied to biomolecules capable of replication process like RNA or
DNA).

Artificial Chemistry and a Metaphor of Chemostat

Let us consider a chemostat (chemical reactor)9,11 composed of formal ob-
jects called the molecules. It is postulated that the chemostat is not spa-
tially structured (in chemistry it is said that the reactor is well stirred).
Molecules are represented by formal structured objects (e.g. token strings,
rooted trees, λ-expressions, etc.). An interaction between molecules is able
to transform information, which is stored in the composition of the mole-
cules. Therefore a chemical reaction (causing changes in the internal struc-
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ture of reacting molecules) can be considered as an act of information
processing. The capacity of the information processing depends on the
complexity of molecules and chemical reactions between them.

General ideas of the chemostat approach will be explained by an example
of chemostat as a binary function optimizer that resembles many features
of the molecular Darwinian evolution emphasized in the previous section.
Let us consider a binary function

{ } [ ]f
n

: , ,0 1 0 1→ (13)

This function f(g) maps binary strings g = (g1, g2, ..., gn) ∈ {0,1}n of length n
onto real numbers from the closed interval [0,1]. We look for an optimal
solution

g g
g

opt
{0,1}

arg max=
∈ n

f ( ) (14)

Since the cardinality of the set {0,1}n of solutions is equal to 2n, a CPU time
necessary for solution of the above optimization problem grows exponen-
tially

t n
CPU ≈ 2 (15)

This means that the solution of the binary optimization problem (14) be-
longs to a class of hard numerical NP-complete problems. This is the main
reason why the optimization problems (14) are solved by the so-called evo-
lutionary algorithms3,4, which represent very efficient numerical tech-
niques of solving binary optimization problems. The purpose of this
subsection is to demonstrate that a metaphor of replicator provides an effi-
cient stochastic optimization algorithm.

Let a chemostat be composed of molecules that are realized by binary
strings g = (g1, g2, ..., gn) ∈ {0,1}n. A monomolecular reaction is considered
(cf. Eq. (6))

g g gf(g) →  + ′ (16)
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where the formed molecule g′ substitutes a randomly selected molecule
from the chemostat. A term f(g) assigned to the chemical reaction is inter-
preted as the probability (rate constant) of the occurrence of reaction (16).
In evolutionary algorithms a selection pressure in population of solutions
(chromosomes) is created by a reproduction process based on chromosome
fitness. Chromosomes with a greater fitness have the greater chance to take
part in a reproduction process (a measure of quality of chromosomes); on
the other hand, chromosomes with a small fitness are rarely used in the re-
production process. This simple manifestation of Darwin’s natural selection
ensures a gradual evolution of the whole population. In the present ap-
proach the mentioned principle of fitness selection of molecules is pre-
served, but it is now combined with an additional selection pressure due to
the constancy of number of molecules in the chemostat. A molecule in-
coming to the reaction is randomly selected from the chemostat. After eval-
uation of the quality of the selected molecule it is then stochastically
decided whether the reaction is performed or not (see Algorithm 1) and,
moreover, the resulting molecule substitutes another randomly selected
molecule. Finally, we specify the product g′ from the right-hand side of (16)
as mutation3 of an incoming molecule g

′ =g gOmut ( ) (17)
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P: =randomly generated chemostat of molecules g;
epoch: = 0;
for epoch: =1 to epochmax do
begin select randomly a molecule g;

if random <f(g) then
begin g′: =Omut(g);

product g′ substitutes in chemostat
a randomly selected molecule;

end
end;

ALGORITHM 1
A pseudo Pascal implementation of chemostat optimization. The algorithm is initialized by a
chemostat composed of randomly generated molecules (binary strings of the fixed length).
A copy of a randomly selected molecule g is transformed with a probability equal to its func-
tional value f(g) by a mutation operator onto a new molecule g′. The mutation operator causes
an actual change only very rarely. This new mutated molecule substitutes a randomly selected
molecule



where Omut is a stochastic mutation operator that changes single bits with a
probability Pmut. A pseudo Pascal code for the replicator algorithm is pre-
sented in Algorithm 1.

As an illustrative example we will study the chemostat approach specified
for a simple unimodal function determined over binary strings of length 4.
Let us postulate that a chemostat is formed by a multiset composed of bi-
nary strings of length 4

{...,(1100),...} ⊂ {0,1}4 (18)

Each binary vector α is evaluated by a rational number from the closed
interval 〈0,1〉

real( ) =
1

2 – 14
g gint( ) (19)

where int(g) is a nonnegative integer assigned to g. A rate constant k as-
signed to the binary string is specified as follows

( )k f( ) ( ( )) sin( ( ))g g g= = − ⋅real real
1
2

1 2π (20)

with an optimal solution gopt = (1011), where real(gopt) = 11/15 and f(11/15) =
0.9973.

The chemostat is composed of 1000 randomly generated binary strings
and the mutation operator Omut is specified by a 1-bit probability Pmut =
10–5. The obtained numerical results are displayed in Fig. 3. We can see that
those binary strings are spontaneously emerging in the chemostat, which
correspond to a suboptimal solution with a rational numerical value closely
related to real(gopt) = 0.25. Main results of this section may be summarized
as follows: (i) A metaphor of Eigen’s replicators offers an effective sto-
chastic optimization algorithm, where a proof of its convergence to a
global solution immediately follows from the existence of a unique as-
ymptotically stable solution with the greatest rate constant, and (ii) if
the probability of mutations is a very small number, then the obtained
results are very similar to those obtained by Eigen’s replicator equa-
tions with mutations (see Fig. 2).
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Folding of Binary Strings

In an analogy with RNA molecules that are endowed with the so-called
folding26 (secondary structure), we will study a similar property specified
also for binary strings (Fig. 4). The folding of a binary string may be speci-
fied by a list of matched pairs i – j (for i < j) and unmatched singles k

fold(g) = {i1 – j1,i2 – j2,...,ir – jr;k1,k2,...,kq} (21a)

where the pairs are restricted by the following three conditions:
1. For any pair i – j holds

j i− ≥ 2 (21b)

2. For any two pairs i – j and k – l (restricted by i ≤ k) holds either
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FIG. 3
Plot of frequencies of appearance of some dominant binary strings of length 4. The chemostat
was initiated by 1000 randomly generated binary strings. At the beginning of the process, the
chemostat was composed entirely of strings (0010). After 2.5 × 106 time steps, the most domi-
nant final solution is gfin = (1100), where real(gopt) = 12/15 and f(12/15) = 0.9755. This final
solution is juxtaposed in rational number evaluation to the optimal solution αopt = (1011),
where real(gopt) = 11/15 and f(11/15) = 0.9973, but the Hamming distance d of binary strings
(1100) and (1011) is great, d = 3 (in theory of GA this effect is called Hamming’s cliff). This rel-
atively great size of the Hamming distance is the main reason why the algorithm is unable to
achieve the global solution (1011)
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i k j l= ⇔ = (21c)

k j i k l j< ⇒ < < < (21d)

The first condition (21b) means that a minimal length of the so-called hair-
pin in the produced folding is two (see the right-hand part of secondary
structure in Fig. 4). The second condition (21c) means that each string en-
try can take part in no more than one matched pair. Finally, the third con-
dition (21d) implies that the so-called pseudoknots are forbidden (i.e. each
folding may be represented by a planar graph; the appearance of pseudo-
knots in folding could cause its non-planarity). Moreover, the folding of g
is defined such that it contains a maximal number of matched pairs; this
condition reflects a physical meaning of folding as a most stable secondary
structure. The last two conditions (21c), (21d) are very important for appli-
cation of dynamic programming technique for construction of folding.

The folding fold(g) of binary string g may be alternatively expressed by a
bracket formalism26 (see Fig. 4). This means that each folding of the binary
string may be expressed by a string composed of three symbols {(,),.}, for-
mally fold(g) ∈ {(,),.}n . Of course, actual forms of these strings are strongly
restricted such that all three conditions (21b)–(21d) should be satisfied. The
simplest way to ensure the correctness of bracket representation is to postu-
late that bracket strings are formulae of a simple context-free grammar
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FIG. 4
A binary string (a linear graph with vertices assigned to binary entries that are connected by
edges) may be folded into a two-dimensional structure (called the secondary structure) in such
a way that complementary binary pairs are matched together. A bracket representation of fold-
ing is presented in the upper part of the drawing, where dot symbols correspond to
noninteracting string entries and brackets “(” and “)” correspond to a pair of matched comple-
mentary entries



〈VN,VT,S,R〉 where VN = {S} is a set of nonterminal symbols, VT = {(,),.} is a
set of terminal symbols, S is a starting nonterminal symbol, and R is a rule
set composed of the following three rules

S → (S)|SS|. (22)

A feasible folding fold(g) which satisfies all three restrictions (21b)–(21d) is
interpreted as a formula composed entirely of terminal symbols that be-
longs to the language L generated by the grammar (22), i.e. fold(g) ∈ L. An
illustrative example of grammar production looks as follows

S → SS → (S)S → ((S))S → ((SS))S → ((.S))S
→ ((..))S → ((..))SS → ((..))SSS → ((..))S(S)S
→((..))S(SS)S → ((..))S(.S)S → ((..))S(..)S
→((..)).(..)S → ((..)).(..).

We use a simple dynamic-programming technique26 for the construction
of folding of binary strings. In general, it can be used as an alternative to
backtrack searching methods (these have an exponentially increasing CPU
time; see, e.g., the binary optimization problem (13), (14)), when a respec-
tive system may be decomposed into smaller subsystems such that the used
evaluation of system is always additive with respect to its subparts (then an
exponential time complexity en is reduced to a cubic complexity n3). Let Sij
be a substring of bracket representation assigned to a folding between i and
j (including) binary entries. These entries are initialized as follows

Sii = ′.′ and Si,i+1 = ′..′ (23)

The forthcoming entries Sij , for j – i ≥ 2, are recurrently constructed by

Si,j = max ,i k j ik k jS S
≤ ≤ − +⊕

1 1 (24)

where ⊕ is the symbol of concatenation of “substrings” Sik and Sk+1,j which
were already constructed in the previous stages of the algorithm (Algorithm 2).
Moreover, if Sik (Sk+1,j) contains in the leftmost (rightmost) position dot
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symbol ′.′ and ith and jth binary entries are complementary, then the re-
spective dot symbols are substituted by ( and ) symbols. Symbol “max” in
(24) means that we select that index k, which produces maximal pairing in
Sij. The resulting folding in the form of bracket representation is stored at
entry S1n.

The main problem in actual implementation of this algorithm for con-
struction of folding of binary strings consists in the fact that although it
constructs a folding with maximal matchings, it offers as a result only one
result of many possible. Therefore, the algorithm should be considered as a
test-bed for development of phenotype of genotypes and also as an integral
part of evaluation of genotypes by fitness.

The notion of folding allows us to introduce the triad of fundamental
concepts from evolutionary biology, in particular genotype, phenotype, and
fitness. The genotype g is represented by a binary string of length n, g =
(g1, g2, ..., gn) ∈ {0,1}n, the phenotype p(g) corresponds to a folding of g; for-
mally, it may be expressed by the bracket notation, p(g) = fold(g) ∈ {(,),.}n.
Finally, the fitness, a numerical attribute of g, is specified by making use of
the respective phenotype. For our forthcoming considerations the fitness
will be specified as a similarity between a phenotype p(g) and an ad-hoc re-
quired phenotype preq

fitness(g) = s(p(g),preq) (25)

This means that maximal fitness equal to n is achieved when a similarity
between the respective phenotype p(g) and the required phenotype preq is
maximal (n) (i.e., p(g) = preq). On the other hand, if s(p(g),preq) < n ⇔ p(g) ≠
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for i: =1 to n do S[i,i]: = ′.′ ;
for i: =1 to n–1 do S[i,i+1]: = ′. .′ ;
for d: =2 to n–1 do
for i: =1 to n–d do
begin j: =d+i ;

S[i,j] : =max{i≤k≤j–1, S[i,k]⊕ S[k+1,j]} ;
end;
folding: =S[1,n] ;

ALGORITHM 2
A dynamic-programming scheme for the calculation of folding of a binary string of length n.
The resulting folding is coded in the bracket representation and is stored at the string entry S1,n



preq, then the fitness is smaller than n; in a limit case, when the foldings are
fully dissimilar (i.e. s(p(g),preq) = 0), the fitness of g is vanishing, fitness(g) = 0.
The notion of similarity will be specified in the forthcoming section. Table I
contains illustrative results, where genotypes represented by all possible bi-
nary strings of length n = 7 are evaluated by phenotype foldings and fit-
ness. We can see that many different binary strings are evaluated by the
same folding, and similarly, many different foldings are evaluated by the
same fitness. This simple observation immediately implies that mappings of
genotypes onto phenotypes and phenotypes onto fitness are of the many-
to-one type, i.e. there exist a huge redundancy in both mappings (Fig. 5).
A single binary string could be theoretically evaluated by more foldings
than one, but the mapping produced by an application of the Algorithm 2
is the first one, which was found with a particular maximal number of
matched pairs.

An interrelationship between the elements of this triad “genotype-
phenotype-fitness” is formally expressed as a sequence of two mappings
(see Fig. 5)

G p → P fitness → [0,∞) (26)

This means that the basic entity is the genotype: it is initially mapped onto
the phenotype, and then the phenotype is mapped onto the fitness. An ab-
breviated form of this composite mapping is as follows
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FIG. 5
Schematic outline of the composite mapping (26). Both respective mappings are of the
many-to-one type, i.e. many gene strings are mapped onto one phenotype string, and simi-
larly, many phenotype strings are mapped onto one value of fitness. This means that there ex-
ists a huge redundancy of the genotype coding, many different genes (strings) may be
evaluated by one value of fitness. This property of the huge redundancy of genotype coding is
of considerable importance for the existence of neutral stases in the Darwinian evolutionary
theory

genotype phenotype

0

fitness

R
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TABLE I
All possible genotypes represented by binary string (for n = 7), the respective phenotypes
and fitness

No. Genotype Phenotype Fitnessa

1 (0000000) (1111111) . . . . . . . 1
2 (0000001) (0000100) (1111011) (1111110) . . . . ( . ) 1
3 (0000010)

(0000011)
(1111101)
(0001001) (0001101) (0010010) (0010110)

. . . ( . ) . 0

4 (0011000)
(0110010)
(1000111)
(1011100)
(1110010)

(0011100)
(0110110)
(1001001)
(1100011)
(1110110)

(0100011)
(0111000)
(1001101)
(1100111)
(1111100)

(0100111)
(0111100)
(1010110)
(1101001)

(0101001)
(1000011)
(1011000)
(1101101)

. . ( ( . ) ) 0

5 (0000101)
(0111010)
(1101110)

(0010001)
(1000101)
(1111010)

(0101100)
(1001111)

(0101110)
(1010001)

(0110000)
(1010011)

. ( ( . ) .) 3

6 (0000110) (0011010) (1100101) (1111001) . ( ( . ) ) . 5
7 (0000111)

(0101101)
(1010010)
(1111000)

(0001111)
(0110001)
(1011010)

(0010011)
(0111001)
(1100100)

(0011011)
(1000110)
(1101100)

(0100101)
(1001110)
(1110000)

( ( ( . ) ) ) 7

8 (0001000) (1110111) . . . ( . . ) 0
9 (0001010) (1110101) ( ( . ) . ) . 0

10 (0001011)
(0100001)
(1001011)
(1100001)

(0001100)
(0100100)
(1001100)
(1100110)

(0001110)
(0100110)
(1011001)
(1110001)

(0011001)
(0110011)
(1011011)
(1110011)

(0011110)
(0110100)
(1011110)
(1110100)

. ( . ) ( . ) 0

11 (0010000) (1101111) . . ( . . . ) 1
12 (0010100)

(1101011)
(0111011) (0111110) (1000001) (1000100) ( . ) . ( . ) 1

13 (0010101) (0101010) (1010101) (1101010) . ( ( . . ) ) 1
14 (0010111)

(1011101)
(0011101)
(1100010)

(0100010)
(1101000)

(0101000) (1010111) . ( . ( . ) ) 0

15 (0011111) (1100000) ( ( . ) . . ) 2
16 (0100000) (1011111) . ( . . . . ) 1
17 (0101011) (1010100) ( . . ) ( . ) 0
18 (0101111) (1010000) ( . ( . ) . ) 5
19 (0110101) (0110111) (1001000) (1001010) ( . ) ( . . ) 0
20 (0111101) (1000010) ( . . ( . ) ) 2
21 (0111111) (1000000) ( . . . . . ) 3

a Fitness is calculated as a graph-theory similarity between the respective phenotype and the
so-called required phenotype represented by preq = (((.))), see Eqs (32a)–(32d)



G f p= →   fitnesso [0,∞) (27)

This new mapping immediately maps the genotype strings onto fitness
without the necessity to consider explicitly an intermediate called the phe-
notype. In this connection one may ask why there is worthwhile to intro-
duce the phenotype as a mediator between the genotype and the fitness. Of
course, such a question is fully acceptable from the pure mathematical
point of view, but it must be noted that the concept of phenotype is a very
effective and fruitful heuristic for interpretation of the Darwinian evolu-
tionary theory. In particular, a given form of phenotype is usually consid-
ered as an evolutionary goal, and therefore we may say that the Darwinian
evolution is represented mainly as a sequence of phenotypes, which are
progressively closer and closer to the evolutionary phenotype goal.

Wright1 in 1931 introduced one of the most fundamental concepts of the
Darwinian evolution called the fitness surface (Fig. 6). Moreover, by making
use of this concept he characterized the Darwinian evolution as an optimi-
zation process, where the evolved population seeks a global maximum (or
another solution closely related to this global one)

gopt = arg max f(g) (28)

Collect. Czech. Chem. Commun. (Vol. 68) (2003)

156 Kvasnička, Pospíchal:

FIG. 6
Fitness landscape (or more precisely, fitness surface) was initially introduced into theory of the
Darwinian evolution in 1931 by Wright1, who characterized the Darwinian process as an opti-
mization process over the fitness landscape specified by a composite mapping f (27). The re-
sulting population genotype corresponds to a point – optimal genotype gopt – with a maximal
fitness. Loosely speaking, the Darwinian evolution should have tools to find a way from a
suboptimal solution gsubopt to optimal solution gopt

fit
ne

ss

gsubopt gopt genotype



This complex optimization combinatorial problem will be solved in the
forthcoming part of this paper by methods of artificial chemistry based on
the metaphor of Eigen’s replicators. It will be demonstrated that the
“chemostat” formalism offers an effective tool for optimization of problems
of the form (28), i.e. “replicator” methods of artificial chemistry are very
well suitable to mimic the molecular Darwinian evolution.

To summarize the main results of this section, we have observed that
both mappings of genotype onto phenotype as well as phenotype onto
fitness are of strongly stochastic nature with huge redundancy (both
mappings are of the many-to-one type). General properties of these
mappings may be specified only by making use of computer-simulation
tools, i.e. instead of exact “deterministic” description of properties of
mappings, we generate histograms of appearances of their different en-
tities and then we deduce from them some general properties of statisti-
cal validity.

A Set-Theory Formalism

A basic concept of the present formal theory is genotype g represented by a
binary string of length n, g = (g1g2...gn) ∈ G = {0,1}n. For pairs of genotypes g =
(g1g2...gn) ∈ G, g = g g g Gn( ... )′ ′ ′ ∈1 2 , an L1 (Hamming) metrics (distance) is de-
termined

d g gi i
i

n

( , ) | |g g ′ = − ′
=
∑

1

(29)

A mutation of the genotype g onto another genotype g′, or formally g′ =
Omut(g), is called neutral if both genotypes have the same fitness. In our
forthcoming considerations this type of neutrality will be classified as a
weak neutrality

g weak → ′ g = Omut(g) ⇒ fitness(g) = fitness(g′) (30a)

On the other hand, if mutation of a genotype does not change a corre-
sponding folding (phenotype), then we speak about a strong neutrality

g strong → ′ g = Omut(g) ⇒ folding(g) = folding(g′) (30b)
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Since the main driving force in the molecular Darwinian evolution is fit-
ness of genotypes, the appearance of mutations that are weakly neutral,
will be considered as one of hidden reasons for a continuation of evolution.
Furthermore, if the appearance of neutral mutations is restricted to strongly
neutral mutations, then, loosely speaking, their appearance is indeed a hid-
den stage of evolution, they could not be recorded by an external observer.

A genotype graph $G = (V,E) has a vertex set V composed of 2n vertices iden-
tified with binary strings of length n, V = G, and an edge set E is composed
of edges that connect two vertices – binary strings with Hamming distance
equal to one

E( $G) = {e = (g,g′); d(g,g′) = 1} (31)

The genotype graph $G may be formally identified as a hypercube composed
of 2n vertices (Fig. 7).

Formally, each genotype g = (g1g2...gn) ∈ G is evaluated by its folding, it
will be called the phenotype, p(g) = fold(g) ∈ {(,),.}n. As was already men-
tioned in the previous section, the folding (i.e. phenotype) is represented
by a formula belonging to language L (see Eqs (22a, 22b)). All possible phe-
notypes form a set P, we put P ⊂ {(,),.}.

For the set P we may define a similarity (metrics) as follows27: Let p(g) =
(p1p2...pn) ∈ L and p p p p Ln( ) ( ... )′ = ′ ′ ′ ∈g 1 2 be two phenotypes, their set-theory
specification is (see Eq. (21a))
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FIG. 7
Two hypercubes for n = 3 (A) and n = 4 (B) that visualize the notion of the genotype graph $G .
Vertices correspond to binary strings, two vertices are connected by an edge if their Hamming
distance is equal to one

A (n = 3) B (n = 4)
000 001

011010

100 101

111
110

0000 0001

0010
0011

01010100

0110 0111

10011000

1010 1011

1111

11011100

1110



p p p p p p= ∪ ′ = ′ ∪ ′pair single pair single, (32a)

{ } { }p i j i j p k kr r qpair single= =[ , ],... ,[ , ] , ,... ,1 1 1 (32b)

{ }′ = ′ ′ ′ ′ ′ = ′ ′p i j i j p k kr rpair single[ , ],... ,[ , ] , ,... ,1 1 1{ }q (32c)

A concept of similarity is determined graph-theoretically27 by maximal com-
mon subgraph of p and p′ determined by intersections of subsets for pair
matching and subsets for unmatched vertices, respectively (Fig. 8)

( )s p p p p p p( , ) | | | |′ = ∩ ′ + ∩ ′2 pair pair single single (32d)

Let ( )p p p p Pnreq
(req) (req) (req)= ∈1 2 ... be a required phenotype, then a fitness of

the genotype g may be defined as follows (see Eq. (25))

fitness(g) = s(p(g),preq) (33)
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FIG. 8
An illustrative example of similarity calculation between two phenotypes p and p′, p ppair pair∩ ′ =
{[4,8]}, p psingle single∩ ′ = {1,5,6,7}, s(p,p′) = 2 × 1 + 4 = 6

p:

p′:



This means that each genotype is evaluated by a fitness represented by a
nonnegative integer; a largest fitness n is achieved when the phenotype p(g)
is identical to the required phenotype preq.

An evolutionary goal is to look for such an optimal genotype gopt such
that the fitness function (33) achieves maximal value

gopt = arg max fitness(g)
g∈ G

(34)

For larger values on n, this optimization problem represents an extremely
complicated computational problem, which will be approached in the
forthcoming part of this paper by a chemostat technique specified already
above in the previous section.

The vertex set V may be decomposed into disjoint subsets of vertices that
are evaluated by the same fitness

V = Vf
f
U (35)

where Vf = {g; fitness(g) = f} ⊂ V. Applying this decomposition to edge set,
we get its disjoint decomposition

E = Ef f
f f f f

,
, ( )

′
′ ≤ ′
U (36)

where Ef f, ′ is an edge subset composed of edges with one vertex from Vf
and the other vertex from Vf ′ , E e V Vf f f f, { ( , ); }′ ′= = ′ ∈ ∧ ′ ∈g g g g . A neutral
subgraph with specified fitness f is determined by $ ( , ),G V Ef f f f= ′ . Formally,
the genotype graph $G may be expressed in a “reduced” form called the fit-
ness graph $F, where a vertex set V( $ )F is composed of all neutral subgraphs,
V( $ )F = { $ , $ ,...G Gf f ′ }, and an edge e = ( $ , $G Gf f ′ ) ∈ E( $ )F exists if both neutral
subgraphs $Gf and $Gf ′ have at least one common edge in the genotype
graph $G (Figs 9 and 10)

( ) ( ) ( ) ( ) ( )e G G E F V V Ef f f f f f= ∈ ⇒ ∃ ∈ ∃ ′ ∈ ′ ∈′ ′ ′
$ , $ $ : , ,g g g g (37)
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In a schematic condensed representation of genotype graphs as fitness
graphs with vertices assigned to single subgraphs with given fitness (e.g. see
Fig. 10), each edge may be evaluated by the probability of transition from
one neutral subgraph to the other neutral subgraph. Single edges in the
condensed genotype graph may be evaluated by probabilities pr(f f→ ′) of
stochastic transition from one neutral graph $Gf to another neutral graph
$Gf ′ (see Fig. 10) (another alternative way of definition of this probability is
given in ref.23)
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FIG. 10
Set-theory visualization of a transition probability from a neutral subgraph $Gf to another neu-
tral subgraph $Gf ′ . Since the probabilities are not symmetric, pr( $Gf → $Gf ′ ) ≠ pr( $Gf ′ → $Gf ), an
edge in the condensed genotype graph should be substituted by two edges that are oriented in
opposite ways, and each of them is evaluated by the respective probability

FIG. 9
A An illustrative representation of the genotype graph $G composed of vertices (genotypes – bi-
nary strings) and edges that connect them (if the respective Hamming distance is equal to
one). A vertex set V( $G) is decomposed into four disjoint vertex subsets that are evaluated by
the same fitness. These subsets induce four neutral subgraphs $Gf . B Fitness graph $F may be un-
derstood as a condensed form of the genotype graph $G , its vertices are neutral subgraphs that
are connected by an edge if both its vertices – subgraphs are in $G connected by an edge

A B

pr( $Gf → $Gf ′ )

$Gf ′

pr( $Gf ′ → $Gf )

$Gf
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Eff ′
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pr(f f
Ef f

f

→ ′ = ′)
| |,

ω
(38a)

ωf f f
f

E= ′′
′′

∑ , (38b)

It is simple to prove that the above probabilities satisfy

0 ≤ pr(f f→ ′) ≤ 1 (39a)

pr(f f
f

→ ′ =
′

∑ ) 1 (39b)

Especially, an expression pr(f f→ ) specifies a probability of a neutral transi-
tion, when the fitness f remains unchanged.

An alternative decomposition of the genotype graph $G into subgraphs
with specified phenotypes may be introduced by decomposition of the ver-
tex set V into disjoint subsets of vertices with the same folding – phenotype

V = Vp
p
U (40)

where Vp = {g; folding(g) = p} ⊂ V. Applying this decomposition, we get an
alternative decomposition of the edge set E

E = Ep p
p p p p

,
, ( )

′
′ ≤ ′
U (41)

where Ep p, ′ is an edge subset composed of edges with one vertex from Vp

and other vertex from Vp ′ , E e V Vp p p p, { ( , ); }′ ′= = ′ ∈ ∧ ′ ∈g g g g . A neutral

subgraph with specified folding p is determined by $Gp = (Vp,Ep p, ′ ). Formally,

the genotype graph $G may be expressed in a “reduced” form called the phe-

notype graph $P, where a vertex set V( $P) is composed of all neutral sub-

graphs, V( $P) = { $Gp, $G p ′ ,...}, and an edge e = ( $Gp, $G p ′ ) ∈ E( $P) exists if both

neutral subgraphs $Gp and $G p ′ have at least one common edge in the geno-

type graph $G (Fig. 11)
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( ) ( ) ( ) ( ) ( )e G G E P V V Ep p p p p p= ∈ ⇒ ∃ ∈ ∃ ′ ∈ ′ ∈′ ′ ′
$ , $ $ : , ,g g g g (42)

In a similar way as above we introduce probabilities of transitions from
one phenotype neutral subgraph $Gp to another neutral phenotype subgraph
$G p ′

pr(p p
Ep p

p

→ ′ = ′)
| |,

ω
(43a)

ω p p p
p

E= ′′
′′

∑ , (43b)

In the remaining part of this section we turn our attention to relationships
between probabilities pr(f f→ ′) and pr(p p→ ′). After simple algebra, we get

pr( pr(f f p pp

fp f p f

→ ′ = → ′
∈ ′ ∈ ′

∑ ∑) )
ω
ω

(44a)

where, by making use of (39b) and (43b), we may prove that

ω ωf p
p f

=
∈

∑ (44b)

From this property immediately follows that ratios ωp/ωf satisfy 0 ≤ ωp/ωf ≤ 1
and ω ωp fp f

/ =
∈∑ 1. This means that (44a) can be understood as a convex
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FIG. 11
Decomposition of two adjacent neutral subgraphs $Gf and $Gf ′ into phenotype subgraphs $G p‘s
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combination of probabilities pr(p p→ ′). Consequently, a value of pr(f f→ ′)
is bounded from above by a maximal value of probabilities pr(p p→ ′)

pr( pr(f f p p→ ′ ≤ → ′) max{ )}
p′∈ f ′

(45)

Let us consider two different genotypes gini and gfin; we say that the geno-
type gfin is achievable from the genotype gini if there exists in the genotype

graph $G a trajectory T(gini,gfin) that connects the genotypes

T(gini,gfin) : gini = g1 → g2 → ... → gk–1 → gk = gfin (46a)

such that fitness of all participated genotypes creates a nondecreasing se-
quence

fitness(g1) ≤ fitness(g2) ≤ ... ≤ fitness(gk–1) ≤ fitness(gk) (46b)

Each trajectory T(gini,gfin) can be evaluated by probability of its performance
defined as follows

pr(g pr(fitness( fitness(ini fin→ = →
=

−

+∏g k
i

k

k) ) ))g g
1

1

1 (47)

where the probability pr(f f→ ′) is determined by Eq. (38a). Of course,
there may exist many different trajectories T(gini,gfin); then the resulting
probability pr(gini fin→ g ) is equal to the maximal value of the probabilities
assigned to these different trajectories.

A particular trajectory T(gini,gfin) can be interpreted also as a sequence of
neutral subgraphs $ ( , ),G V Ef f f f= ′

T f f G G G Gf f f fk
( , ) : $ $ ... $ $

ini fin ini fin
→ → → →

−2 1
(48)

where fini = fitness(gini) and ffin = fitness(gfin). Genotype gi (1 ≤ i ≤ k) belongs
to the neutral subgraph $Gf i

. We have to emphasize once again, that a se-
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quence of used fitnesses is nondecreasing, f1 ≤ f2 ≤ ... ≤ fk. If a pair of
juxtaposed neutral subgraphs exists in Eq. (48) such that their fitness is
equal, fi = fi+1, but respective phenotypes are different, then we say that the
transition gi → gi+1 is weakly neutral.

An alternative look at the trajectory T(gini,gfin) may be provided by using
the concept of neutral subgraph with specified phenotype $ ( , ),G V Ep p p p= .
We get

T p p G G G Gp p p pk
( , ) : $ $ ... $ $

ini fin ini fin
→ → → →

−2 1
(49)

where pini = folding(gini) and pfin = preg = folding(gfin), i.e. the final genotype
is unknown, we require only its phenotype preg. A transient genotype gi (1 ≤
i ≤ k) belongs to a neutral subgraph $G pi

, i.e. pi = folding(gi). A single transi-
tion gi → gi+1 is called strongly neutral if both genotypes belong to the same
neutral subgraph with specified phenotype, $G pi

= $G pi + 1
.

The trajectory T(gini,gfin) and its probability pr(gini → gfin), defined by
(46a) and (47), respectively, can be evaluated by the entity called the en-
tropy as follows

S f fk k
i

k

( ) ln ( ) ) ln[g g g gini fin ini finpr pr(→ = − → = − → +
=

−

1
1

1

1∑ → +pr(f fk k )] (50)

where fk = fitness(gk). We expect that all probabilities 0 < pr(fk → fk+1) <<1.
This means that the most feasible trajectory is that one with maximal en-
tropy. Unfortunately, the situation is not such simple as it seems at first
sight, in particular, a loop of repeating genotypes with the same fitness can
exist. In order to avoid loop problems in trajectories, we have to introduce
the additional constraint that each contributing genotype gk appears just
once in the respective path T(gini,gfin). The concept of trajectory entropy
S(gini → gfin) can be used as a guiding principle for construction of trajec-
tory T(gini,gfin). Formally, the Darwinian evolution may be considered as a
metaphor how to effectively solve this complex combinatorial problem of
construction of the required trajectory; within evolutionary algorithms, we
have a huge class of methods that are capable of solving the problem.
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RESULTS AND DISCUSSION

Chemostat Simulation of Molecular Darwinian Evolution

The chemostat approach outlined in the first part of this communication
will be used as an algorithmic framework for simulation of the molecular
Darwinian evolution. An initial composition of chemostat is made by iden-
tical strings of length 39

gini = 1111111111111110 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (51a)

The required phenotype is specified by

preq = ( ( ( ( ( ( . ) ) ) ) ) ) ( ( ( ( ( ( . ) ) ) ) ) ) ( ( ( ( ( ( . ) ) ) ) ) ) (51b)

Its secondary propeller-like structure is composed of three shafts (see sec-
ondary structure Q in Fig. 13). This phenotype will serve as a goal pheno-
type, all fitness calculations of binary strings being realized with respect to
the required phenotype. This means that we expect a genotype with folding
fully specified by the required phenotype preq to emerge in the chemostat.
The mutation operator Omut (17) is specified by a probability of 1-bit muta-
tion Pmut = 0.0001. The used probability of 1-bit mutation is sufficiently
small to ensure that the produced trajectory is composed of adjacent strings
(with unit Hamming distance) in the respective genotype graph $G (see Fig. 13).
Further important parameter, the size of chemostat (number of strings), is
equal to 500.

The composition of chemostat is characterized by two different types of
entropies that are determined as follows: Let w(x) be the probability that
the chemostat string is evaluated by entity x (fitness or genotype). Then (cf.
ref.17)

S w x w xX
x

= −∑ ( ) ln[ ( )] (52)

These entropic parameters are very sensitive to composition changes of the
chemostat. For a homogenous chemostat (composed of the same strings),
both entropies are vanishing. A fitness entropy Sfitness may serve as a proper
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indicator of intermediate transient states where a new genotype with a
higher fitness substitutes an older genotype with lower fitness. This mo-
ment of transition can be detected from a fast temporary increase of the fit-
ness entropy Sfitness from its usual zero value. The genotype entropy is
capable of detecting such transient stages where fitness remains un-
changed, but the genotype composition of chemostat is temporarily
changed due to the existence of the neutral mutation. This means that the
genotype entropy is capable of detecting very rare events when fitness re-
mains invariant but there appear temporarily different neutral genotypes.
Both entropies have nonnegative values; it is possible to assess their maxi-
mal values as follows. At most time stages the chemostat composition is ho-
mogeneous, then Sx = 0. A deviation from this homogeneity is usually
realized as a two-component system (e.g. two different types of the geno-
type or phenotype, with respective concentrations α and 1 – α). Then the
entropy is specified by Sx = –α ln α – (1 – α) ln (1– α), for 0 < α < 1. Its maxi-
mal value is achieved for α = 1/2, Sx(1/2) = ln 2 ≈ 0.7. This usually means
that great positive values of the respective entropy indicate that the
chemostat is composed of two components with roughly same concentra-
tions.

Numerical results of our computer simulation of the molecular Darwin-
ian evolution are displayed in Figs 12 and 13. We can see that the produced
plot of the chemostat mean fitness (diagram D in Fig. 12) is a non-
decreasing step function, with a few relatively long neutral stases. Diagrams
A and B correspond to a genotype and fitness entropy, respectively, where
these plots unambiguously indicate that at the end of the first neutral stasis
(about 300 000 epochs) a considerable deviation from genotype homogene-
ity exists, i.e. in this evolutionary stage the chemostat is likely composed of
two different genotypes with the same fitness. This deviation from the
chemostat homogeneity can be considered as a necessary preliminary stage
before an evolutionary transition to a next stage with higher fitness. The
same situations can be found also in the previous stages of evolution, in
particular for phenotype transitions A→B and E→F. Diagram C represents
concentration profiles of different genotypes with respective fitness; we see
these profiles to nicely agree with the Eigen’s theory prediction of their
form (see Fig. 2, diagram B). In particular, they form a sequence of well sep-
arated profiles. The dotted vertical auxiliary lines mark evolutionary transi-
tions well indicated by entropies. Figure 13 shows a sequence of
phenotypes that appeared for single evolutionary stages (see Fig. 12). We
got 17 different genotypes that are evaluated by different phenotypes (sec-
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ondary folding structures). Their similarity to the required phenotype (51b)
specifies directly their fitness.

We can see that neutral mutation plays an important role for the molecu-
lar Darwinian evolution to be able to escape local maxima on fitness hyper-
surface (Figs 14 and 15). In many cases, when a respective string g is not
adjacent in the genotype graph $G to another string g′ with higher fitness
(i.e. a transition g → g′ causes an evolutionary jump), it is useful to
stochastically look for another string ~g in the neighborhood of g which has
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FIG. 12
Plots of A genotype entropy, B fitness entropy, C concentrations of strings with respective fit-
ness, and D mean fitness. Mean fitness is a nondecreasing plot with two relatively long neutral
stases. Its stairs are well indicated by fitness and genotype entropies. The plot of genotype en-
tropy (A) at the end of the first neutral stasis indicates a substantial increase in genotype en-
tropy whereas the fitness entropy is simultaneously almost vanishing. From this observation
we may conclude that there exists huge appearance of “neutral mutants” that have the capa-
bility of producing by 1-bit mutations a new string with a higher fitness. Plot C displays rela-
tive concentrations of strings with given fitness. Each concentration profile is identified with
labels of phenotypes in Fig. 13
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FIG. 13
A trajectory T(gini,preq), where the initial genotype is specified by (48) and the required pheno-
type is outlined by diagram Q. The length of trajectory is 18, in all transient states the used
mutations are of the 1-bit type (between respective strings there is unit Hamming distance).
There exist two cases of neutral mutations, in particular transitions 11 and 15. These transi-
tions are different, the former corresponding to a sequence of neutral mutations, whereas the
latter to a “parallel” appearance of two neutral mutations (i.e. the trajectory is split into two
paths which are connected in the next step)
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FIG. 14
Schematic outline of the neutral stasis between “jumps” from the neutral graph with fitnessi
into another neutral graph with fitnessi+1. At the neutral stage shown in details, hill-climbing
forms a sequence of actual solutions within a cluster. The first solution in this sequence corre-
sponds to a result from the previous “jump” and the last solution enables a “jump” to the
forthcoming neutral graph fitnessi+1. Then the neutral stasis is repeated until a proper solution
is found, which can be used for the next “jump” to further neutral graph

FIG. 15
A Schematic illustrative plot of the molecular Darwinian evolution when neutral mutations do
not exist. An evolutionary adaptation ends at the nearest local maximum (in this case we may
say that the Darwinian evolution is a local optimizer, population fitness is “scrambled” on fit-
ness hypersurface to nearest maxima). B On the other hand, when neutral mutations are con-
sidered (fitness hypersurface is composed of many “plateaus” with constant value of fitness), a
local character of Darwinian adaptation may be abridged by neutral “plateaus”, which allow to
overcome valleys with lower fitness. This means that the molecular Darwinian evolution has a
good chance to achieve a global maximum on fitness hypersurface in the course of adaptation
process. (After Schuster23)
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the same fitness, but for which an evolutionary jump ~g → g′ with an in-
crease of fitness, fitness(g′) > fitness(~g), already exists.

Robustness of Phenotype

Recently, the problem of robustness of an evolutionarily emerged pheno-
type26,28–32 is considered by theoreticians as a very important aspect of evo-
lutionary theory. In these concepts it is postulated that the evolutionary
goal is not only a best fitted phenotype (closely related to the required one)
but it should simultaneously manifest a minimal vulnerability on muta-
tions. That is, the resulting phenotype would not be very dependent on
1-bit mutations of the particular genotype. It is expected that most of the
mutations are neutral or nearly neutral (with small impact on the shape of
phenotype).

First of all, we have to specify this concept of robustness, which will play
a fundamental role in our forthcoming considerations. Let us consider a
genotype g; its phenotype and assigned fitness are denoted by p(g) and
fitness(g), respectively. Robustness of g is determined as follows

robust(g) = – γ s p p

U

( ( ), ( ))

( )

g g

g g

′

′ ∈
∑ (53)

where 0 < γ < 1 is a robustness parameter (we used γ = 0.85) and U(g) is a
neighborhood of g composed of all its 1-bit mutations. We see that the ro-
bustness robust(g) is most sensitive to those contributions that are caused
by mutated genotypes g′, which phenotypes have a very small similarity to
the phenotype of the original genotype g, i.e. for s(p(g),p(g′)) ≈ 0 closely re-
lated to zero. Summarizing, we can say that the evolutionary goal is speci-
fied by two conditions: (1) fitness(g) = max and (2) robust(g) = max. Of
course, this two-criterion evolutionary objective function can be reduced to
one-criterion in an obvious way such that the fitness is slightly increased
by the robustness, i.e. fitness′(g) = fitness(g) + ω × robust(g).

In order to understand the role of robustness in the molecular Darwinian
evolution we repeated our computer simulations such that we have in-
cluded also the influence of the robustness on the probability of replication
of genotypes in the chemostat. More explicitly, in our standard computa-
tional experiments the probability of replication was slightly decreased by
the respective robustness. Our results are summarized in Fig. 16. We can see
that inclusion of robustness in the probability of replication has a dramatic
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impact on the genotype representation of the required phenotype. In par-
ticular, if the robustness is included and the fitness is slightly increased by
it, then the final genotype (with folding equal to that required) is endowed
with substantially higher robustness than that one with ignored robustness.

Recently, the concept of phenotype robustness has been extensively stud-
ied by Ancel and Fontana28,29. They used an interesting analogy between
the robustness of RNA folding and the Baldwin effect33–35. They showed
that the modularity of folding (the whole secondary structure is divided
into smaller parts called modules such that 1-bit mutations cause only shape
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FIG. 16
Two different plots with robustness ignored (A) or robustness minimized (B) in the course of
chemostat evolution. In both cases the maximal fitness was achieved, but in the case A the fi-
nal robustness is substantially higher than in the case B. Moreover, both histograms nicely il-
lustrate this conclusion, in particular the histogram B manifests the expected feature that the
biggest part of distance changes is localized in small-value changes, whereas in the first case,
distance changes were distributed through twice larger interval of distance-value changes
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changes within one module) arises as a by-product when natural selection
increases their robustness by stabilizing their shapes. These authors con-
cluded28,29 that while it is unclear how natural selection could generate
modularity directly, there are many scenarios in which natural selection fa-
vors the increase of robustness. In their model, modularity arises as a neces-
sary by-product of that reduction. It is the nature of modules to resist
changes, hence the process that produces the modularity simultaneously
leads populations into evolutionary dead ends. In other words, modularity
may correspond to a steep local maximum evolutionary trap, from which
there is a small chance to escape to a global maximum.

SUMMARY AND CONCLUSIONS

The main purpose of this paper was to study a simple model of molecular
evolution based on binary strings and their folding into secondary struc-
tures. Binary strings are evaluated by fitness that reflects a graph-theory
similarity between the respective folding and the required folding consid-
ered as an evolutionary goal. Binary strings – genotypes are able to replicate
with the probability proportional to their fitness. The replication process is
not entirely perfect, there exists a very small probability of mutations that
produce binary strings slightly different from their parent templates. The
dynamics of the replication is fully specified by Eigen’s kinetic differential
equations that form sound phenomenological basis of theory of molecular
replications with mutations. Our results and observations can be summa-
rized as follows:

1. Eigen’s theory of replicators forms a sound phenomenological founda-
tion of the molecular Darwinian evolution. Its differential-equation solu-
tions that are specified by a proper selection of the required rate constants
offer concentration plots very similar to those experimentally observed6,36

(see Figs 2 and 3).
2. The Darwinian evolution is an interplay between Monodian37 chance

and necessity, between stochastic and deterministic processes. The Darwin-
ian evolution is composed of parts that are fully deterministic, which are
fully predictable (e.g. genotype–phenotype mapping), but integral parts of
evolution involve also processes of a strong stochastic character that could
not be well predicted, we can speak only about their basic statistic charac-
teristics (e.g. mutations).

3. Wright’s idea1 of fitness hypersurface (adaptive or fitness landscape)
is of a great heuristic importance and can be considered as one of the great-
est achievements of the theory of Darwinian evolution. Then, after this
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concept, the Darwinian evolution may be interpreted as a kind of an evolu-
tionary algorithm3,4 for solution of complicated (obviously NP-complete)
combinatorial optimization problems.

4. The used model provides a simple mechanism for an explanation of
neutral mutations and their importance for the Darwinian evolution (see
Figs 14 and 15). The existence of neutral mutations on the fitness surface is
of great importance for overcoming evolutionary traps of local maxima.
The Darwinian evolution is divided into long-term neutral stasis, where
mean fitness of population remains unchanged, but the composition of
population strings slowly stochastically wanders towards strings with the
possibility of 1-point mutational jumps to strings with greater fitness.

5. Time orientation of the Darwinian evolution is unambiguous. This is
manifested, for example, by the existence of nondecreasing population
mean fitness plot. Fitter strings have an evolutionary advantage with re-
spect to other string, they are reproduced more frequently than strings with
smaller fitness. In other words, we can say that the Darwinian evolution is
a progressive change of mean population genotype such that the corre-
sponding mean fitness is nondecreasing during the whole evolution.

6. Two different time scales23 may be distinguished in the Darwinian evo-
lution, in particular adaptive stages and neutral stages. An adaptive stage
corresponds to a sudden change of mean fitness (see Fig. 13), where two
different phenotypes coexist; old phenotype has a smaller fitness than a
new phenotype. Since the probability of replication of strings is propor-
tional to their fitness, strings corresponding to the new phenotype have a
greater chance to be reproduced than the old ones. New strings with a
greater fitness win in the course of several evolutionary steps; conse-
quently, an adaptive stage, when a string species is substituted by another
string species, seems to an external observer as an extremely short evolu-
tionary stage. On the other hand, a neutral stage of the Darwinian evolu-
tion consists in a long-term stasis, where the appearance of neutral
mutations stochastically prepares a sudden emergence of the next adaptive
stage.

7. Evolutionary properties of the presented chemostat model are nicely
specified by two types of entropies17 that are introduced for specification of
changes in the chemostat composition. The fitness entropy reflects com-
position changes of binary strings with respect to their fitness, i.e. the
so-called neutral mutations do not affect this type of entropy. On the other
hand, the genotype entropy is very sensitive to each composition change
in the chemostat; consequently, it is affected by neutral mutations. There-
fore, their simultaneous observation in the course of evolution allows us to
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simply distinguish between nonneutral and neutral mutations on the evo-
lutionary trajectories.

8. The concept of robustness of the phenotype assigned to binary strings
is consistent with recent efforts to explain the so-called modularity of sec-
ondary structures of RNA molecules. We have demonstrated that the same
required phenotype may be achieved such that robustness is maximized.
The resulting phenotype is substantially insensitive to mutation of the re-
spective binary string.

9. What are the limits of the present model? The used forms of geno-
type and its mapping onto phenotype are extremely simple, they do not re-
flect more complex organisms other than viruses, bacteriophages, and some
prokaryotic bacteria. For complex organism, the model of genotype (and its
mapping onto phenotype) must be much more complex, it should take
into account such concepts as variable length, hierarchical structure, other
mutations than 1-point ones, etc. Most important problem of the recent
theory of Darwinian evolution is a lack of a theoretical model explaining
the emergence of the so-called “irreducible complexities”38. The present
model is unable to explain this problem even on an elementary level. Re-
cent efforts in Artificial Life are concentrated on areas that might be of im-
portance for elaboration of a more general theory of the Darwinian
evolution than the one presented here. In particular, modular aspects of
the genotype are recently very intensively studied39–41 and the problem of
symbiosis is modeled42. Both problems require a much more complex geno-
type than the linear strings of symbols with constant lengths which are
studied here.

The work was supported by the Scientific Grant Agency of the Slovak Republic (grants 1/7336/20
and 1/8107/01).
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